Caspase 3/7 reagent (1:2000) is prepared and added to wells at 50 μL per well, together with 50 μL test substances. Anti-CD3, (final concentration 0.1 $\mu g/mL$), anti-CD28 (final concentration 0.5 $\mu g/mL$) and rhIL-2 (final concentration 10 ng/mL) are prepared in complete media and added in a final volume of 50 μL per well. Untouched PBMCs are prepared from cryopreserved stock and added to wells at 1×104 cells per well in a volume of 50 μL per well, such that the final well volume is 200 μL . Cells are incubated/monitored in the Incucyte Zoom® for a period of seven days.

[0949] Wells are imaged at 3-hour intervals in phase, green and red channels. Automated image analysis enables selective quantitation of SK-OV-3 nuclei (Red) per well, apoptotic SK-OV-3 nuclei (Green/Red colocalised) to enable the effect of test substance on apoptosis to be determined and quantified graphically over time.

1-54. (canceled)

55. A compound of Formula (I):

$$R^3$$
 N
 X
 $(CH_2)_n$
 A^4
 A^2
 R^2
 $(CHR^1)_m$

or a pharmaceutically acceptable salt, or a solvate, or a solvate of the salt thereof, wherein:

m is 0 or 1;

n is 0, 1 or 2;

X is -NR8;

R¹ is H, C₁₋₆alkyl or a 6-10 membered aryl; R² is a 5-6-membered heteroaryl, a fused 9-10 membered

bicyclic heteroaryl, a 6-10 membered aryl, a 5-6 membered monocyclic heterocycloalkyl or a 5-11 membered spiroheteroalkyl or a fused 8-10 membered partially unsaturated bicyclic heterocyclyl; each of which may independently be optionally substituted by one or more groups independently selected from C₁₋₆alkyl, halogen, haloC₁₋₆alkyl, —OC₁₋₆alkyl, —CN, $-C(=O)C_{1-6}$ alkyl, $-C(=O)OC_{1-6}$ alkyl, $-SO_2$ C_{1-6} alkyl, —C(=O)NH₂, halo C_{1-6} alkyloxy or phenyl; R³ is H or C₁₋₆alkyl; or a 3-10 membered cycloalkyl, a 6-10 membered aryl, a 5-6 membered heteroaryl, a fused 9-10 membered bicyclic heteroaryl, a 4-6 membered monocyclic heterocycloalkyl, a —C₁₋₆alkyl-heteroaryl or a 5-11 membered spiroheteroalkyl; each of which may independently be optionally substituted by one or more groups independently selected from $-C_{1}$ 6alkyl, —OC₁₋₆alkyl, halogen, —CN or —C(—O) OC_{1-6} alkyl;

 OC_{1-6} alkyl; A^{1} is -N— or $-CR^{6}$ —; A^{2} is -N— or $-CR^{5}$ —; A^{3} is -N— or $-CR^{7}$ —; A^{4} is -N—, -O—, -S—, -CH—N— o -CH— CR^{4} —;

 R^4, R^5, R^6 and R^7 , which may be the same or different, are each selected from —H, —OH, — $C_{1\text{--}6}$ alkyl, halogen, halo $C_{1\text{--}6}$ alkyl, —CN, — $C_{1\text{--}6}$ alkyl-CN, —OC $_{1\text{--}6}$ alkyl, —C $_{2\text{--}6}$ alkynyl, —C $_{2\text{--}6}$ alkynyl-C $_{1\text{--}6}$ alkyl-aryl, —C $_{2\text{--}6}$ alkynyl-C $_{1\text{--}6}$ alkyl-aryl, —C $_{2\text{--}6}$ alkynyl-C $_{3\text{--}6}$ cycloalkyl, —C $_{2\text{--}6}$ alkynyl-C $_{1\text{--}6}$ alkyl-NR 11 R 12 ,

 $-C_{2-6}$ alkynyl- C_{1-6} alkyl- OR^{13} , $-C(=O)C_{1-6}$ alkyl, $-C(=O)NH_2$, a 3-10 membered cycloalkyl, a 5-11 membered spiroalkyl, a 4-6 membered monocyclic heterocycloalkyl, a 6-10 membered aryl, a 5-6 membered heteroaryl, a 5-6 membered heteroaryl, a 5-6 membered bicyclic heteroaryl, each of which may independently be optionally substituted by one or more groups independently selected from $-C_{1-6}$ alkyl, C_{1-6} alkyl- NR^9R^{10} , $-C_{1-6}$ alkyl-OH, -C(=O) OC_{1-6} alkyl or oxopyrrolidine;

or R⁵ and R⁷ together form a ring —CH—CH— CH—CH—, —OCH₂O— or —CH₂CH₂CH₂—; or the moiety

$$A^1$$
 A^2
 A^2

may be fused with oxopyrrolidine; and

 $R^8, R^9, R^{10}, R^{11}, R^{12}$, and R^{13} , which may be the same or different, are each selected from H or C_{1-6} alkyl;

provided that the compound of formula I is not 1-(4-chlorobenzyl)-1-cyclopentyl-3-phenylurea;

N-(3,5-dimethylphenyl)-3-ethyl-2-methyl-7-phenyl-5,7-dihydro-4H-thieno[2,3-c]pyridine-6-carboxamide; [194]

1-cyclopentyl-3-phenyl-1-(2-thienylmethyl)urea; [195]

1-(4-chlorophenyl)-3-phenyl-1-(2-thienylmethyl)urea; [196]

1-[1-(4-fluorophenyl)ethyl]-3-phenyl-urea; [197]

1-(4-chlorophenyl)-3-[1-(5-chloro-2-thienyl)ethyl]urea; [199]

3-(3,4-dichlorophenyl)-1-methyl-1-(2-thienylmethyl) urea; [200]

1-[(5-methyl-2-phenyl-oxazol-4-yl)methyl]-3-phenylurea; [203] and

1-(3-chlorophenyl)-3-[(3-chloro-2-thienyl)methyl]urea; [204].

56-57. (canceled)

58. The compound according to claim 55, wherein m is 1.

59. The compound according to claim 55, wherein n is 0.

60. The compound according to claim **55**, wherein n is 2.

 $\mathbf{61}$. The compound according to claim $\mathbf{55}$, wherein R^1 is H.

62. The compound according to claim **55**, wherein X is NH—

63. The compound according to claim **55**, wherein R^2 is a 5-6-membered heteroaryl or a fused 9-10 membered bicyclic heteroaryl.

64-66. (canceled)

67. The compound according to claim **55**, wherein R³ is a 5-6-membered heteroaryl.

68. (canceled)

69. The compound according to claim **55**, wherein R³ is a 4-6 membered monocyclic heterocycloalkyl.

70. (canceled)